
ONE DEMONSTRATION IMITATION LEARNING

Bradly C. Stadie∗1,2, Siyan Zhao∗1,2, Qiqi Xu1,2, Bonnie Li3, and Lunjun Zhang1,2

1Vector Institute
2University of Toronto

3McGill University

ABSTRACT

We develop a new algorithm for imitation learning from a single expert demon-
stration. In contrast to many previous one-shot imitation learning approaches, our
algorithm does not assume access to more than one expert demonstration during the
training phase. Instead, we leverage an exploration policy to acquire unsupervised
trajectories, which are then used to train both an encoder and a context-aware
imitation policy. The optimization procedures for the encoder, imitation learner,
and exploration policy are all tightly linked. This linking creates a feedback loop
wherein the exploration policy collects new demonstrations that challenge the
imitation learner, while the encoder attempts to help the imitation policy to the best
of its abilities. We evaluate our algorithm on 6 MujoCo robotics tasks.

1 OPENING REMARKS

The sample efficiency of imitation learning is really and truly incredible. After training on only a
few dozen examples, imitation learning agents can acquire new skills that mimic the behaviors of
experts (Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016; Zhang et al., 2018). This
is in stark contrast to reinforcement learning (RL), wherein agents routinely require millions or
even billions of data points before they can acquire a new skills (Haarnoja et al., 2018; Mnih et al.,
2015; Andrychowicz et al., 2017). What’s more, imitation learning does not require access to
reward functions, which must be crafted by skilled researchers and are often fiendishly difficult to
design. Still, for all its advantages, imitation learning is not particularly convenient. Acquiring expert
demonstrations is often onerous, requiring some combination of motion controls, virtual reality, or
teleoperation (Zhang et al., 2018). Further, the policies acquired via imitation are often brittle and
limited. They will break when the desired behavior changes even slightly.

Recently, there has been a series of monographs that try to address the shortcomings of imitation
learning by considering the problem of one-shot imitation learning (Duan et al., 2017; Finn et al.,
2017; Wang et al., 2017). In the one-shot setting, agents must learn to acquire new skills from only
a single demonstration. Broadly, this is usually done by meta-training an imitation policy over a
distribution of tasks, each of which requires its own expert trajectories. Using this task distribution,
agents meta-learn some model that allows them to do quick inference on a new expert demonstration
at test time. While this is a great idea in theory, requiring a distribution of related tasks is often an
onerous assumption. Indeed, collecting expert demonstrations for a single task is often quite difficult,
let alone an entire distribution. In practice, these task distributions are often rather limited and most of
the tasks an agent can accomplish at inference time are quite similar to the training tasks, i.e. training
and test tasks both involve block stacking. In many ways, it seems one shot imitation learning is
simply kicking the can down the road.

Given the burden of providing training data for one-shot imitation learners, one might ponder what
kind of algorithm we could develop if we simply removed this requirement. This leads us to ask the
(perhaps foolish)1 question: Can we develop an effective one shot imitation learning algorithm that
assumes access to only a single expert demonstration? In this paper, we construct such an algorithm.

∗Equal Contribution
1See Section 5.3.5 question 7 for discussion on why this question might be inherently foolish, and how this

foolishness can be largely eased by instead considering the problem of two-demonstration imitation learning.
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Presented with the constraints of this problem, we proceed in perhaps the only reasonable way: by
attempting to collect diverse unsupervised trajectories, and then using those trajectories to train an
imitation policy. This type of approach to one demonstration imitation has been considered multiple
times before, most notably in (Pathak et al., 2018; Nair et al., 2017), which enjoyed a great deal of
success in knot tying and navigation domains, and in (Wang et al., 2017), which likewise enjoyed a
great deal of success in locomotion domains.

Figure 1: Top: A single expert demonstration of the Sawyer Pick Task. Bottom: Our method, having
been trained to imitate trajectories from an exploration policy, uses the top demonstration in an
attempt to mimic the expert.

In contrast to prior approaches, we wanted to develop an algorithm that does not rely on pre-training
a powerful encoder (as in Wang et al. (2017)), nor on a forward predictive model exploration heuristic
(Pathak et al., 2018). Instead, we wanted to build an algorithm where exploration for new unsupervised
trajectories and the capabilities of the imitation learner are tightly linked, and grow continuously
together. Broadly, our algorithm proceeds by leveraging an exploration policy to acquire unsupervised
trajectories. An encoder module then consumes an entire unsupervised trajectory and produces a
context z. This context, along with the present state, are used in a behavioral cloning algorithm that
trains both the encoder and the imitation network end-to-end. Finally, a diversity reward based on
the KL divergence between these encodings’ underlying distributions is calculated. The exploration
policy is subsequently trained on this reward to visit trajectories that produce more diverse encodings,
completing the loop. At inference time, the single expert demonstration is encoded and the imitation
policy is run forward. Full algorithmic details and experimental results are presented below.

2 RELATED WORK

Our work is closely related to the field of meta-learning (Thrun, 1996; Schmidhuber et al., 1997;
Snell et al., 2017), specifically the idea of meta-learning an inference network (Gordon et al., 2018;
Chen et al., 2019). Meta-learning has itself been applied to the problem of imitation (Ghasemipour
et al., 2020; Xu et al., 2018a), sometimes specifically in the context of one-shot learning (Duan et al.,
2017; Finn et al., 2017). Our approach is related to the idea of meta imitation learning with automatic
task generation. Automatic task proposal methods have themselves been investigated extensively, for
example in (Gupta et al., 2018; Hsu et al., 2019; Storck et al., 1995; Schmidhuber, 2015). The two
closest automatic task generation papers, in terms of our considered problem setting, are probably
(Wang et al., 2017; Pathak et al., 2017), which are discussed above.

We make extensive use of a trajectory embedding module. The idea of embedding a trajectory into a
useful context is an evergreen one. Recent interesting work on learning embeddings that are good
for planning includes (Watter et al., 2015; Srinivas et al., 2018). Kurutach et al. (2018) and Thomas
et al. (2017) try to learn representations with causal interpretations, in the sense that the agent should
learn how to independently manipulate factors of variation in the environment. The specific type
of encoder we consider in this paper also features in Garnelo et al. (2018) for neural processes and
Rakelly et al. (2019) for RL. In Vezzani et al. (2019), the core idea was to learn encodings that are
useful for exploration, in the sense that visiting encoded states with low density is an exploration
metric that approximates something like Kolter & Ng (2009).

Finally, one of the underlying ideas in this paper is learning an exploration policy to fill a buffer
with data that is useful for an imitation learner. Filling a replay buffer with exploration policy data
was previously considered in (Xu et al., 2018b). Other interesting candidates for curiosity signals
are Intrinsic Curiosity Modules (Pathak et al., 2017), DIAYN (Eysenbach et al., 2018), and VIME
(Houthooft et al., 2016). See (Ngo et al., 2012; Schmidhuber, 1991) for general references on
curiosity.
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3 PROBLEM STATEMENT

3.1 PRELIMINARIES

We consider infinite-horizon Markov decision process (MDPs), defined by (S,A, P,R, T ), where S
denotes the state space and A the action space. P is the transition probability, P : S ×A× S → R.
R is the reward function R : S → R. T is the horizon. A policy ρφ(at|st) gives a distribution over
the action space given the current state. Often, but not always, policies are trained to maximize the
expected sum of discounted reward

∑
t E(s0,s2,...)[γ

tR(st)], for some γ < 1, a discount factor. In
this paper, we will make use of the Soft Actor Critic algorithm, which instead solves the maximum
entropy objective

∑
t E(s0,s1,...)[γ

tR(st) + αH(π(·|st))], using an actor-critic model. For more
details, refer to Haarnoja et al. (2018).

In imitation learning, an agent is supplied with expert demonstrations {τ}Ni=1, where τi =
[(s0, a0), (s1, a1), (s2, a2), ...]i. Behavioral cloning (also called supervised learning in other contexts)
fits a model πθ(sj) = âj , which is trained with the loss Lθ = d(πθ(sj), aj). Here, d is a distance
metric – often Euclidean distance or cross entropy. However, this distance metric can also be a
learned density metric, in which case an inverse reinforcement learning method is required (Abbeel
& Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016). For this paper, we will assume WLOG that
Euclidean loss is used unless otherwise stated.

3.2 THE ONE DEMONSTRATION IMITATION LEARNING OBJECTIVE

We consider a scenario where we are given a single expert demonstration τ . Assume that the expert
acted according to some reward function RE . Then, our goal is to train an imitation learner πθ that
takes as input τ , along with the current state st and maximizes the discounted sum of future rewards
under RE .

max
θ

Eat∼πθ(st;τ)

[
T∑
t=0

γt ·RE(st)

]
(1)

Note the dependence of πθ on τ . Of course, we usually do not have access to RE . We will, however,
assume that RE exists and use it for evaluation purposes only, similarly to (Ho & Ermon, 2016).

If a second expert demonstration exists, then we can write down an alternative form of this objective.
Suppose τ1, τ2 are both expert trajectories. Let si, ai be a state action pair from τ2. Then the goal is
to minimize ∑

i

‖πθ(si; τ1)− ai‖22 =
∑
i

‖âi − ai‖22 (2)

In words, we want to train a policy πθ that can use τ1 to infer what actions τ2 would have taken at
states si ∈ τ2.

4 AN ALGORITHM FOR ONE DEMONSTRATION IMITATION LEARNING

We will proceed by essentially making an approximation to Equation 2, in the hope that the learned
policy resulting from this approximation is still performant on the original objective Equation 1.
This approximation, essentially, stems from a lack of access to expert trajectories τE at training
time. Instead, we want to collect diverse unsupervised trajectories τi which can be used to train
the imitation learning objective. For just a moment, let’s forget about how we will acquire these
unsupervised trajectories and assume they are collected randomly. Initialize a buffer B and fill it with
random trajectories τi.

Let us turn our attention towards what kind of architecture we should use for the imitation learner
πθ(s; τ), where τ ∼ B. This model will need to consume all of τ , which is a (potentially long)
sequence of state-action pairs. A natural choice here would be to encode τ with of recurrent network,
and then combine the encoded context z with the agent’s current state to form the input for the
imitation learner.

z = RNN(τ)

πθ(st, z) = ât
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Figure 2: Training starts with initializing the exploration buffer B, with trajectories generated by the
SAC policy (blue area). A batch of trajectories {Ti} are then sampled from the buffer and are passed
into the encoder E to produce contexts zi for each Ti. The imitation network (purple box) πθ takes in
both current state si and its corresponding trajectory context z to predict next action ai. It is trained
with imitation loss (bottom red box). To encourage diversity of trajectories, diversity reward R is
computed as in Equation 6 (top yellow box). SAC (blue cloud) is then trained with R to update the
exploration buffer B, completing one iteration of the training pipeline.

This type of pipeline can be trained end-to-end, as in Duan et al. (2017). We considered this (see
Section 5). However, we ultimately decided on using a Gaussian factor model as a trajectory encoder.
We first read about this type of encoder in the context of neural networks in (Garnelo et al., 2018)
(Equation 6), although prior development can be attributed to (Eslami et al., 2018). A similar model
was also later featured in (Rakelly et al., 2019). Overall, the encoder’s graphical model interpretation
of finding a global task prior convinced us that it would be a good fit for our problem. See those
references for further discussion on the benefits of this type of encoder model.

The Gaussian factor encoder proceeds by selecting state and action pairs (sk, ak) ⊂ τ . These pairs
are passed through a parametric model to parameters that are treated as the mean and variance of a
normal distribution

µk, σk = fφ(sk, ak) (3)

Finally, a context can be sampled from the product of Gaussians over the entire trajectory.

zτ ∼
T∏
k=1

N (µk, σk) (4)

By using the reparameterization trick (Kingma & Welling, 2013) to backpropogate through the
sampling process, this model can be trained end to end simultaneously with the imitation learner. We
call the process from Equations 3 and 4 the encoder. We write

E(τ) = zτ (5)

to denote taking an entire trajectory τ and encoding it with equations 3 and 4.

We are finally ready to return to the question of how we should fill our buffer B with diverse
unsupervised trajectories. One tantalizing possibility is to collect trajectories that produce maximally
different encodings. This serves the dual purpose of finding unique trajectories (trajectories with
different encodings likely have different properties) and finding trajectories that force the encoder
and imitation learner to grow and capture a wider variety of interesting behaviors. Suppose τi has
encoded mean and variance2 µi, σi. We define a diversity reward over trajectories as

Ri =
∑
j

DKL (N (µi, σi)||N (µj , σj)) (6)

2This is the mean and variance of the product of Gaussian PDFs from equation 4, which is itself a Gaussian
function. See (Bromiley, 2003) for calculation details.
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Algorithm 1 One−Demo Imitation Learning Algorithm
Require: Learning rates: α, β

1: Initialize θpol, θim, θen for exploration policy ρ, imitation network π and encoder E , respectively.
2: while not done do
3: Initialize buffer B with trajectories rolled out from exploration policy ρ
4: for number of imitation training iterations do
5: Sample batch of trajectories {Ti} ∼ B
6: Encode each trajectory Ti ∈ {Ti} to its context zi using encoder E
7: Sample batch of transitions τ = {s1, a1, ...sj , aj} from {Ti}
8: Compute âj = π(sj , zi) for each sj
9: Update θim ← θim − α∇θimL(

∑
i ‖âj − aj‖

2
2)

10: Update θen ← θen − β∇θenL(
∑
i ‖âj − aj‖

2
2)

11: end for
12: for all Ti ∈ {Ti} do
13: Compute diversity reward Ri =

∑
j DKL (N (µi, σi)||N (µj , σj))

14: Add Ri to B.
15: end for
16: for number of exploration training iterations do
17: Train SAC to update θpol with {τi, Ri} ∼ B.
18: end for
19: end while

Which is given explicitly as

∑
j

log

(
σi
σj

)
+
σ2
i + (µi − µj)2

2σ2
− 1

2

This reward, Ri, is given to each trajectory i in the buffer at its terminal state. SAC (Haarnoja et al.,
2018) is then trained to maximize this reward and subsequently used to collect more trajectories.
Although we found giving each trajectory a reward at only its terminal state to be sufficient, in
principle one could compute this reward at every timestep j by using only the first j timesteps of
every trajectory. We empirically compared these two reward choices in 7.2

µi,j , σi,j = E [(s0, a0, . . . , sj , aj)i] (7)

Ri,j =
∑
k

DKL (N (µi,j , σi,j)||N (µk,j , σk,j)) (8)

This alternative diversity reward is considered in Section 7.2.

We can now approximate Equation 2 during training by using τ ∼ B that were obtained by an
exploration policy trained under Equation 6. Only one small snag remains. Equation 2 assumes
access to two paired trajectories τ1, τ2. Our trajectories, however, are unpaired. In principle, one
could pair trajectories with the closest encodings. However, in practice, we found it sufficient to
simply sample input states si from τi during training. Although this has been known to cause issues
(Ross et al., 2011), it did not deter us. We leave the pairing of unsupervised exploration trajectories
during training as interesting future work.

5 EXPERIMENTS

5.1 ENVIRONMENTS

Experiments are run on 6 MuJoCo environments. One of the environments, Hopper-V3, is taken
from OpenAI Gym. Another, Reacher, is a modification of Gym’s Reacher-V2 that augments the
observation space. In Point Chase, a point mass has to chase another point mass around a bounded
arena. In Point Multi-Goal, a point mass must go to one of several potential stationary goals. In
Sawyer Reach, a Sawyer robot arm must reach a specified goal location. In Sawyer Pick, a Sawyer
robot arm must move to a block on a table and close its gripper around the block.
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(a) Hopper (b) Point Chase (c) Reacher

(d) Sawyer reach (e) Sawyer pick (f) Point Multi-Goal

Figure 3: Learning Curves for 6 environments. Averaged over 10 seeds. The RL baseline for
hopper, which is around 3000, is omitted because of the graph’s scale. Similarly, the RL baseline for
Point-Chase, which is 0, is omitted due to scale.

5.2 PRIMARY RESULTS

The primary learning curves are presented in Figure 3. The evaluation step is completed by taking a
single expert trajectory and running it through the encoder to produce E(τE) = zE . Subsequently,
zE is given to the imitation policy πθ, along with the agent’s current state s to produce actions â.
This process continues until the trajectory’s horizon is reached. At each time step, the environment
produces a ground truth RL reward, which is what we plot in Figure 3 on the y-axis.3 This reward is
only used for evaluation purposes.

In addition to our algorithm, we consider the following baselines:

Behavioral Cloning (1 demo): Standard supervised learning with a single expert demonstration.

One Shot Imitation + ICM: The entire demonstration is consumed via the GRU before its output is
given concatenated to the current state. This resulting concatenated vector is put through an MLP
to produce an action prediction. Diverse training trajectories for self-imitation are obtained via an
ICM Pathak et al. (2017). We also attempted to obtain these trajectories with a diversity metric on the
output encoded states h from the GRU. However, this method totally failed to learn.

MLP + Last Obs Encoding + Diversity: A baseline of this form appears in both Finn et al. (2017)
and Duan et al. (2017). The last observation in the expert trajectory is processed through an MLP,
producing an output h. This h is then concatenated with the current state, and the result is sent through
another MLP before guessing the expert action. To collect diverse trajectories for self-imitation, we
use a diversity loss on the output encodings h across trajectories, similar to equation 6, only replacing
KL divergence with Euclidean Loss. We also considered an ICM loss to collect diverse trajectories,
but for this baseline, a diversity loss worked much better.

5.3 FURTHER ANALYSIS AND DISCUSSION

During the course of developing our algorithm, several design decisions required careful consideration.
In this section, we do our best to recount those key design decisions, presenting the options we

3To be clear, for Hopper we plot the returns, as is standard. For every other environment, we plot the reward
at the final state.
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considered and the evidence we gathered to help inform our final decisions. Additional analysis is
presented in Appendix A.

5.3.1 ON THE ENCODER’S EFFECTIVENESS

1. Does the imitation learner benefit from the presence of the encoder?

Figure 4: Reacher imitation policy evaluation
loss, with encoder (blue) and no encoder (red).

Yes. To verify this, we plot two curves. First, the
validation loss curve of an imitation learning policy
trained with available context encoding z. Second, the
loss curve for an imitation policy without access to
this context. Both imitation learners are trained simul-
taneously on the same trajectories. To be clear, this
validation loss is the aggregate euclidean distance be-
tween the imitation policy and the ground truth actions,∑
t ‖π(st, z) − at‖2 for the policy with encoder and∑
t ‖π(st)− at‖2 for the policy without.

5.3.2 ALTERNATIVES TO THE DIVERSITY REWARD IN EQUATION 6

Figure 5: Sawyer Pick, alternative methods for
unsupervised traj collection.

2. In our algorithm, diverse unsupervised trajec-
tories are encountered by training a SAC policy
to maximize the reward from Equation 6. How
does this compare to alternative methods of unsu-
pervised trajectory collection? The simplest baseline
here is to collect random trajectories. Alternatively, if
more sophistication is desired, one could use a curiosity
signal such as an ICM to encourage visitation of unique
states. Moreover, there is the possibility of combining
the diversity reward in Eq 6 with a curiosity module
such as an ICM. Results are presented in Figure 11. In principle, one can use any method they
desire to collect unsupervised trajectories. For example, (Thomas et al., 2017) or (Vezzani et al.,
2019) might be an interesting choice. However, a major benefit of our algorithm is the tightly linked
optimization between exploration, the encoder, and imitation. This is lost with a generic method of
unsupervised trajectory collection.

5.3.3 ALTERNATIVE ARCHITECTURE CHOICES: GAIL FOR IMITATION OR VAES FOR
ENCODING

3. Can you use GAIL (Ho & Ermon, 2016) or other inverse RL techniques for imitation learn-
ing, rather than behavioral cloning?

Figure 6: Sawyer Reach with BC (blue) and
GAIL (red)

Yes. One could collect the unsupervised trajectories us-
ing the diversity metric from One-Demo, and then use
the encoded trajectories as an input for the GAIL policy.
The GAIL algorithm also requires learning a density
metric (inverse reward function), which will also have
to be conditioned on the encoded state z. Recent work
Ghasemipour et al. (2020) suggests that the best results
can be obtained by only backpropagating through z via
the density metric discriminator loss, while stopping
gradients through z during policy training. We used
this trick and substituted GAIL for behavioral cloning
in our algorithm pipeline. This typically performed worse than behavioral cloning, probably because
of the added instability of training both the GAIL policy (with policy gradients) and the GAIL reward
discriminator. See Figure 6.

4. Did you consider another architecture for the encoder, such as a VAE? In Figure 3 we
considered an RNN encoder and an MLP encoder. We did also consider a variational autoencoder,
but found it to be ineffective. See Figure 7. Similar methods that have had success with this type
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of encoder have typically pre-trained the VAE on a large number of sensible demonstrations (Wang
et al., 2017). We assumed no access to such demonstrations, so getting such an encoder to work
reliably was difficult.

Figure 7: VAE (red) vs Gaussian Encoder
(blue), Point Multi-Goal

In any case, our algorithm’s novelty is not reliant on
which encoder one chooses, so this design decision is
more of a secondary concern. See Pathak et al. (2018)
for more discussion on the drawbacks of VAEs in this
problem setting.

5.3.4 FINAL CONSIDERATIONS:
MULTIPLE DEMOS AND FAILURE CASES

5. What happens if you have more than one expert
trajectory? Does performance improve? There are
two simple methods of adapting our algorithm to multi-
ple trajectories. First, one could compute the encoding
zi from Equation 4 for each of the demonstrations i and
then average together the resulting zi to get z = 1

n

∑
zi.

This averaged z can then be fed into the imitation network. Alternatively, each of the individual zi
can be fed into the imitation network, producing n actions ai. These actions can then be averaged and
the mean action taken. We consider developing more principled techniques for two-demonstration
imitation learning an interesting avenue for future work. Results using context averaging are presented
in Figure 8. One, two,five, and ten demo cases are considered.

Figure 8: Point Chase, varying number of de-
mos.

6. This method has an identifiability problem: For
example, if an expert demonstration shows a robot arm
moving right to pick a blue block, how should the im-
itation agent know whether the true intention of the
expert was to move the hand to the right or move the
hand towards the block? If, at test time, the blue block
is to the agent’s left, should the imitation agent move to
the right (as the expert did), or towards the block? It is
true that this problem exists, but it’s fundamentally in-
herent to the one-shot imitation setting, and not unique
to our method. This lack of identifiability cannot be
addressed without introducing a prior, feature space engineering, fixed reset positions, including
sparse reward functions, or using at least two demonstrations. In practice, we’ve found that learning
still occurs in spite of this potential issue, possibly because we considered domains where the initial
state distribution had sufficiently low variance. In problem domains where this identifiability does
become an issue, using some small number of demonstrations is possible, as outlined above. As we
saw, performance on Point Chase (where identifiability matters) improves dramatically by adding
just a single additional expert demonstration.

6 CLOSING REMARKS

Before this research project began, we developed an environment called Cylinder. In this environment,
a point mass must push a small cylinder onto a goal location in the environment. To our surprise,
Cylinder was quite challenging, and could not be solved even by state of the art RL algorithms
after millions of iterations. Now curious about the problem’s overall level of difficulty, we started
collecting expert trajectories, to see how many it would take to solve the environment via imitation
learning.

Eventually, GAIL did solve this environment, but only after 2500 trajectories were manually collected
with a mouse and keyboard. This lead us to wonder, could we develop vastly more efficient algorithm?
This paper was crafted with this purpose in mind. Unfortunately, all algorithms considered in this
paper failed to make any progress on the task whatsoever, even when we allowed for five expert
demonstrations rather than one. Thus, results for Cylinder were omitted from our results. Along with
our code for this paper, we will also release this environment, in the hopes that some day somebody
can figure out how to solve it with only one (or two) expert demonstrations.
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7 APPENDIX A: ADDITIONAL EXPERIMENTS AND DISCUSSIONS

This section is a continuation of the analysis and discussion in Section 5. It includes discussions that
are elucidating, but were nevertheless not crucial enough to appear in the paper’s main body.

7.1 WHAT IS THE BEST WAY TO USE THE ENCODER?

Having previously established that the encoder is useful, we now want to study its specific implemen-
tation details and the interplay between the encoder and the imitation learning network.

7. Optimally, how should the behavioral cloning network best consume the encoded trajecto-
ries? We considered three techniques for incorporating the encoder context z into the behavioral
cloning network. First, we simply concatenate it with the state. Second, we run the state through its
own MLP and then concatenate this output h with the context z. Finally, we use conditional batch
normalization as in Oreshkin et al. (2018) to modulate the behavioral cloning network’s weights as a
function of the encoder context z. We found that this decision made little appreciable difference in
final performance.

Figure 9: Additional methods of processing the encoder context z into the imitation learning network.
CBN is conditional batch normalization, which modulates the imitation network’s weights as a
function of z. Concat simply concatenates the state with z. Net puts z and s through 2 independent
MLP layers, producing outputs h1 and h2, which are then concatenated.

8. Do you have to encode the entire trajectory? Can you just encode the last k-states? Yes, you
can encode the last k-states of the demonstration trajectory.

Figure 10: Number of encoded states in each
trajectory vs. return.

The impact of this decision on the final returns depends
on the environment. Overall, we found encoding the
entire trajectory to be best. Figure 10 looks at the
number of encoded frames vs. the final rewards for the
Point Chase environment. One interesting possibility
we did not consider was sub-sampling some percentage
of frames at random, as in temporal dropout (Duan
et al., 2017).

7.2 KL DIVERGENCE VS EUCLIDEAN DISTANCE

9. Is the use of KL divergnece for the diversity re-
ward important? We found that performance was
only slightly worse if, rather than computing DKL (N (µi, σi)||N (µj , σj)) in Equation 6, one in-
stead samples z ∼ N (µj , σj) and computes the loss with euclidean distance as

Ri =
∑
j

‖zi − zj‖22 (9)

10. What if you compute the diversity reward in Equation 6 at every time step, rather than the
last time step? As discussed in Equation 7, you can compute rewards at every time step, rather than
a single reward at the end of each trajectory.
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Figure 11: Reacher, rewards every timestep vs
end of trajectory

Results for this alternative reward choice are presented
in Figure 11. Giving one reward at the end of each
trajectory seemed to work best, possibly because the
encoder always receives entire trajectories at training
time.

7.3 FAILURE AND LIMITATIONS

11. Where does our method fail? Like many imita-
tion learning methods, our algorithm fails at long tasks.
Specifically, it fails at tasks that can be segmented into
distinct components. It also fails at tasks that require a high amount of precision. For example, our
algorithm achieves a 0 % success rate on the task of stacking two blocks.

Figure 12: Learning curve for one run of
Reacher, with no averaging of seeds. Note the
instability.

In contrast, One Shot Imitation Learning succeeded at
the difficult task of stacking five blocks, a task with a
long horizon that requires a high amount of precision.
Part of this has to do with the way One Shot Imitation
Learning defined its action space (by discretizing each
of the robot’s actuator controls into bins and computing
a cross entropy loss on each bin), making the problem
more tractable. However, part of this also has to do with
One Shot Imitation training on actual expert actions,
which our algorithm only receives at inference time.
Still, it’s important to note these deficiencies in our
algorithm which are not present in One Shot Imitation.

As for further shortcomings, our method was generally
rather unstable. The learning curves in Figure 3 were averaged over 10 seeds. However, if one
looks at the individual runs, frequent oscillations are common (this problem is not exclusive to our
algorithm, and somewhat symptomatic of RL as a whole). See Figure 12. This deficiency is more or
less expected, because the context encoder is being updated with each algorithm iteration without
regard to the baseline RL reward.
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8 APPENDIX B: HYPER-PARAMETERS

Table 1 lists the common SAC parameters and the architecture parameters for the imitation network
and the encoder. Table 2 and Table 3 list the environment specifications and the reward scale
parameters that was tuned for each environment.

Table 1: Algorithm Hyper-parameters and Architectures

Parameter Value

SAC
optimizer Adam (Kingma & Ba, 2014)
learning rate 3 · 10−4

discount (γ) 0.995
replay buffer size 50000
random initial steps 200
number of hidden layers (all networks) 3
number of hidden units per layer 64
number of samples per minibatch 64
nonlinearity ReLU
target smoothing coefficient (τ ) 0.005
target update interval 1
gradient steps 1

Imitation Network πθ
net size 32
number of samples per minibatch 20
number of MLP layers 3
gradient steps 10
nonlinearity ReLU

Encoder E
net size 32
number of samples per minibatch 20
number of MLP layers 3
output encoding dimension 16
gradient steps 10
nonlinearity ReLU

Table 2: Environment Specifications

Environment Action Dimension Observation Dimension

Hopper-v3 3 11
Reacher-v2 2 11
Sawyer Reach 4 24
Sawyer Pick 4 24
Point Chase 2 6
Point Multi-Goal 2 12
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Table 3: Environment Reward Information

Environment Maximum Reward Random Policy Average Reward

Hopper-v3 ∞ 2.3
Reacher-v2 0.0 -1012.0
Sawyer Reach 1.2 -312.0
Sawyer Pick 3.5 -218.1
Point Chase 0.0 -1.45
Point Multi-Goal 0.0 -1.6
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